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Abstract—This paper presents a new model and algorithm
for slef-organization and control of a class of next generation
communication networks: hierarchical heterogeneous wireless
networks (HHWNs), under real world physical constraints. A
nature inspired flocking algorithm (FA) is investigated in this
context. Our model is based on the control framework at
the physical layer presented previously by the authors, where
network robustness is characterized in terms of the system’s po-
tential energy, and control mechanisms are designed to minimize
potential energy for optimized network performance. We first
focus on the modeling of HHWNs under real world physical
constraints. Second, we propose a new FA for self-organization
and control of the backbone nodes in an HHWN by collecting
local information from end users. Our algorithm is examined
in our built simulation platform that supports various dynamic
scenarios. Experimental results demonstrate that FA outperforms
current algorithms for the self-organization and optimization of
HHWN under real world physical constraints.
Index Terms—Heterogeneous wireless networks, directional

wireless communication, self-organization, flocking algorithm.

I. INTRODUCTION
Recent advances in directional wireless communications for

providing broadband wireless solutions are making next gen-
eration communication networks increasingly complex. These
networks are characterized by hierarchical architectures, with
heterogeneous properties and dynamic behavior. The need for
ubiquitous broadband connectivity and the capacity limitation
of homogeneous wireless networks is driving communication
networks to adopt hierarchical architectures with diverse com-
munication technologies and node capabilities at different lay-
ers that provide end-to-end broadband connectivity in a wide
range of scenarios [1-3]. In particular, HHWNs use a wireless
backbone network consisting of a set of base station or
backbone nodes that use directional wireless communications
to provide end-to-end broadband connectivity to capacity-
limited ad hoc networks and/or end hosts. As an example,
backbone-based wireless networks use a two-tiered network
infrastructure, which consists of a set of flat ad-hoc wireless
networks and a broadband wireless mesh backbone network of

higher capability nodes. In this architecture, backbone nodes
use directional wireless communications, either free space
optical (FSO) or directional radio frequency (RF), to aggregate
and transport traffic from hosts at lower layers. The advantages
of directional wireless communications can be well exploited
at the upper layer, where line of sight constraints are less
restrictive and interference-free, point-to-point communication
links can provide extremely high data rates [1-3].
The most important concern in HHWNs is to assure net-

work coverage and backbone connectivity in dynamic wireless
environments. Llorca et al. [4] first proposed a quadratic
optimization method to jointly control network coverage and
backbone connectivity. They defined a quadratic energy func-
tion to characterize the robustness of HHWNs and designed
a force-driven algorithm that dynamically drives the network
topology to minimum energy configurations based on local
forces exerted on network nodes. A quadratic model of the
energy function was then extended to an exponential model
that takes into account the effects of atmospheric attenuation
on the propagation of electromagnetic energy in directional
wireless links [5]. The convex energy model was used by
the authors to develop an Attraction Force Driven (AFD)
algorithm, where the net force used to relocate the backbone
nodes is computed as the negative gradient of the energy
function at the backbone nodes locations. By considering
practical power limitation constraints at the network nodes,
recently Llorca et al. [1] further extended the energy model
using the Morse potential [6], i.e. Morse Force Driven (MFD)
algorithm, such that the convex energy function [5] was
transformed into a non-convex function where communication
energy saturates with distance emulating the effects of link
breaking due to power limitation constraints. Based on this
non convex energy model, the authors developed a hybrid
control model where communication links are retained or
released autonomously based on their cost within the network
architecture [1]. Although these models take into account some
constraints on communication links such as transmitted power
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limitations, a comprehensive model with real world physical
constraints such as taboo areas has not yet been developed.
In this work, we show that when adding real world con-

straints into the problem, such as power limitations, capacity
of the base stations and blockage from terrain, the problem can
no longer be formulated as a convex optimization problem.
This research thus focuses on the modeling of HHWNs under
real world physical constraints at the physical layer, and
the development of effective biology-inspired algorithms for
topology control in dynamic scenarios.

II. NETWORK CONTROL MODEL

The topology control problem in HHWNs can be effectively
formulated as a potential energy minimization problem [4, 5].
Llorca et al. defined the potential energy of a communications
network as the total communications energy stored in the
wireless links forming the network, as follows:

U(bij , hik, B1, B2, ..., BN ) =
α · ∑N

i=1

∑N
j=1 biju(Bi, Bj) +

∑N
i=1

∑M
k=1 hiku(Bi, Tk)

,

(1)
where Bi is the location of backbone node i, Tk is the location
of terminal node k, N is the number of backbone nodes, M
is the number of terminal nodes, α (α ≥ 0) is a weighting
parameter to balance the energy used for forming the mesh
backbone network and covering end hosts, bij and hik are the
binary variables, which are given by

bij =
{

1 if(i, j) ∈ ΛB is connected
0 otherwise

, (2)

where ΛB refers to the backbone topology, and

hik =
{

1 if(i, k) ∈ ΛT is connected
0 otherwise

, (3)

where ΛT refers to the coverage topology, i.e. hik = 1
indicates that backbone node i covers terminal node k. The
measurement of communication cost u(Bi, Bj) is usually
associated with the Euclidean distance between link ends (i, j)
and is precisely defined as the communications energy per unit
time required to send information from node i and node j at
the specified BER (bit error rate) [2, 5]

uij = P j
R0

4π
Di

T Aj
R

(exp(γ||Bi − Bj ||))(||Bi − Bj ||2), (4)

where P j
R0 is the minimum received power, Di

T is the direc-
tivity of the transmitter antenna, Aj

R represents the effective
receiver area and γ is the scattering coefficient [7].
Note that the first term in the cost function in Eq. (1),

denoted by UBB , represents the total energy stored in the
directional wireless links forming the mesh backbone network,
and the second term in Eq. (1), denoted by UBT , represents the
total energy stored in the wireless links covering the end hosts.
Thus, UBB measures the cost for the backbone connectivity,
and UBT measures the cost for network coverage [4].

The topology control problem in HHWNs is then formulated
as an energy minimization problem of the following form:

min{U(bij , hik, B1, B2, ..., BN )}(Bi = (xb
i , y

b
i , z

b
i ), Bi ∈ 3),

(5)
which is subject to Eqs. (2) and (3). Note that the optimization
problem formulated in Eq. (5) is performed over: bij , the
assignment of directional wireless links between backbone
nodes; hik, the assignment of wireless links between backbone
nodes and covered end users; (B1, B2, ..., BN ), the location of
the N backbone nodes. But the link assignments bij and hik,
and the location of backbone nodes (B1, B2, ..., BN ) must be
subject to real world physical constraints, which include:

• Power limitation: refers to the maximum power at a
transmitter. In practice, the increase in transmitted power
needed to maintain a given link BER is limited by the
maximum power at the transmitter. Both backbone nodes
and terminal nodes have power limitations because either
of them might be a transmitter or a receiver.

• Traffic capacity: refers to the maximum traffic that a
backbone node can receive and transfer. In this paper, the
capacity of a backbone node is defined as the maximum
number of terminal nodes a base station can handle.

• Distance threshold: is defined as the minimum distance
for a backbone node to avoid collisions with another
backbone node or a terminal node.

• Taboo areas: refers to constraints imposed by the phys-
ical world such as geographic obstacles (e.g. mountains
and high-rise buildings), undesired weather events (e.g.
heavy clouds or regions of precipitation), and security
areas (e.g. signals are fully blocked due to security
requirements). It is worth noting that these taboo areas
are dynamic. Note that the taboo area, for a particular
backbone node changes dynamically with the movement
of the end user (here, we assume total blockage if there
is no direct line of sight between end user and backbone
node; in fact, the signal attenuation due to blockage can
be incorporated into the link energy function in Eq. (4)).

Let Θ represent the set of physical constraints, which includes
power limitation Cp, traffic capacity of backbone nodes Cc,
minimum physical distance Cd, and taboo areas Ct, i.e. Θ =
{Cp, Cc, Cd, Ct}, then the optimization problem described in
Eq. (5) is transformed into

min{U(bij , hik, B1, B2, ..., BN )}
s.t. Θ = {Cp, Cc, Cd, Ct} . (6)

The energy based models such as AFD model [4] and MFD
model [1], while leading to efficient, scalable and physically
accurate control methods for self-organization in HHWNs, are
parameter-sensitive and require knowledge of the dynamics of
the channel as well as explicit formulations, which can be
difficult to obtain when considering dynamic taboo areas such
as atmospheric agents and terrain. Furthermore, the presence
of taboo areas makes gradient-based methods not able to
guarantee convergence to global optimal solutions. Therefore,
in this research, we propose to use a novel approach for
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the self-organization and optimization of HHWNS, which do
not require explicit knowledge of the channel nor rely on
gradient methods: FA, which uses heuristic forces based on
local information for the system’s self-organization.

III. FLOCKING ALGORITHM

The earliest works on flocking are derived from the an-
imation of flocking dynamics of birds. Reynolds et al. [8]
developed a basic flocking model using three simple steering
rules to control individual agents in the flock. These steering
rules [8] include

• Alignment: steer to move toward the average heading of
neighboring flock mates,

• Separation: steer to avoid collision with other local flock
mates,

• Cohesion: steer to move toward the average position of
neighboring flock mates.

The size of a neighborhood is determined by the sensor range
of a flocking agent. Since the movement of an agent is only
based on local information, the computational time complexity
is significantly reduced. These three rules in Reynolds’s model
[8] are sufficient to emulate the group behavior in nature.
Recall that the objective in HHWNs is to optimize the

total energy cost of the system while guaranteeing end-to-
end communications with physical constraints. We indicate
that the use of energy functions makes it challenging to
obtain the objective when considering physical constraints that
we include in this research. In this section, we develop a
new flocking algorithm that uses heuristic forces to straight-
forwardly model the effects of various constraints on the
network, while preserving the distributed nature and low time
complexity of the entire system.

A. Flocking Rules

In this paper, each backbone node represents an agent in
a flock. A terminal node Tk(s) is assumed to be stationary
during the movement of backbone nodes due to the time
delay, which is consistent with practical situations. Here s
represents the time series of terminal node dynamics. Thus
time t ∈ [0, tmax] (tmax is the stopping time point) with
respect to backbone nodes is a sub-interval of [s − 1, s] with
respect to terminal nodes. A backbone node i at time t is
characterized by its location Bi(t) associated with the real
coordinates (xb

i (t), y
b
i (t), z

b
i (t)) and its force vector (or veloc-

ity vector) υi(t). Let bij(t) and hik(t) be the link assignment
variables for backbone-to-backbone links and backbone-to-
terminal links at time t, respectively. The forces acting on
backbone node i include

• Survival force: makes a backbone node to try to maintain
connection to those terminal nodes it had covered at the
last time period s − 1. This force enables the effective
reduction in the loss of the closest terminal nodes to
backbone node i due to the existence of taboo areas such

as geographic constraints. The force is given by

υi
agn =

∑M
k δ(hik(s − 1) = 1)(Tk(s − 1)− Bi(t))∑M

k δ(hik(s − 1) = 1)
,

(7)
where δ(·) is an indicator function (its value is 1 if the
statement within its argument is true, and 0 otherwise).

• Repulsion force: is produced by three sources: terminal
nodes covered by the backbone node i at the bottom
layer in HHWNs, neighbor backbone nodes connected
to backbone node i at the upper layer, and the terrain.
The whole repulsion force is determined by

υi
pul = υi,BT

pul + υi,BB
pul + υi,ter

pul , (8)

υi,BT
pul = −

∑M
k δ(Hsta)δ(D

pul,BT
sta )(Tk(s)− Bi(t))∑M

k δ(Hsta)δ(D
pul,BT
sta )

,

(9)

υi,BB
pul = −

∑N
j δ(bsta)δ(D

pul,BB
sta )(Bj(t)− Bi(t))∑N

j δ(bsta)δ(D
pul,BB
sta )

,

(10)
υi,ter

pul = δ(Zsta)((0, 0, z
b,pro
i (t))− Bi(t)), (11)

where, Hsta denotes the statement (hik(t) = 1), Dpul,BT
sta

denotes the statement (dBT (Tk(s), Bi(t)) ≤ dBT
th,pul),

bsta denotes the statement (bij(t) = 1), Dpul,BB
sta denotes

the statement (dBB(Bj(t), Bi(t)) ≤ dBB
th ), Zsta denotes

the statement (zb
i (t) − zb,pro

i (t) ≤ dter
th ), dB·(·) = || · ||

is a distance function, dBT
th,pul is the distance threshold

between backbone nodes and terminal nodes, dBB
th is

the distance threshold between backbone nodes, dter
th is

the minimum distance between a backbone node and the
ground, which is measured by the height difference in the
z coordinate, i.e. zb

i (t)− zb,pro
i (t). Note that the exerted

repulsion force υi,ter
pul avoids collision with mountains or

other obstacles on the ground. The repulsion force also
contributes to the balance between network coverage and
backbone connectivity and reduces the risk of solutions
getting stuck in local minima, which it can be observed
from the experiments presented in section 4.3.

• Retention force: is produced by two sources and it is
calculated according to

υi
ten = υi,BT

ten + υi,BB
ten , (12)

υi,BT
ten =

∑M
k δ(Hsta)δ(D

ten,BT
sta )(Tk(s)− Bi(t))∑M

k δ(Hsta)δ(D
ten,BT
sta )

,

(13)

υi,BB
ten =

∑N
j κijδ(bsta)δ(D

ten,BB
sta )(Bj(t)− Bi(t))∑N

j δ(bsta)δ(D
ten,BB
sta )

,

(14)
where, Dten,BT

sta denotes the statement (dBT
th,pul ≤

dBT (Tk(s), Bi(t)) ≤ dBT
th,lea),D

ten,BB
sta denotes the state-

ment (dBB
th ≤ dBB(Bj(t), Bi(t))), dBT

th,lea is another
distance threshold between backbone nodes and terminal
nodes (we explain it in the following section), and κij is
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a coefficient that considers the effect of sharing the load
between backbone nodes, which is defined by

κij = exp

(
Rj −

∑M
k δ(Hsta) +

∑M
k δ(Hsta)

Rj

)
,

(15)
where Rj is the capacity of the backbone node j.

• Release force: is used to consider the effect of power
limitation, which is controlled by a distance threshold
dBT

th,lea. Here, we only consider the release force between
backbone nodes and terminal nodes because a large power
between backbone nodes is usually available in practice
to assure the connectivity at the upper layer. The release
force is given by

υi
lea =

∑M
k=1 γikδ(Hsta)δ(D

lea,BT
sta )(Tk(s)− Bi(t))

δ(Hsta)δ(D
lea,BT
sta )

,

(16)
where, Dlea,BT

sta denotes the statement (dBT
th,lea ≤

dBT (Tk(s), Bi(t))), and γik is a release coefficient de-
termined by

γik = exp
(−ε

(
dBT (Tk(s), Bi (t))− dBT

th,lea

))
, (17)

in which ε is a positive constant with small value, in this
paper we set ε = 0.001.

In order to achieve comprehensive flocking behavior, we
sum up all the forces described above to obtain a net velocity
for the backbone node i as follows

υi(t) =υi
ten(t)+wpυ

i
pul(t)+wlυ

i
lea(t)+waυi

agn(t), (18)

where wp, wl, wa are positive weighting parameters to bal-
ance the effects of the different forces. Then the location of
backbone node i is updated according to the following

Bi(t+ 1) = Bi(t) + ρ · υi(t). (19)

Based on this flocking model, we are capable of straightfor-
wardly addressing constraints such as power limitation with
the use of the release force υi

lea, capacity with the use of
the sharing function κij , distance threshold with the use of
the repulsion force υi

pul, and taboo areas with the use of the
survival force.

B. Algorithm and Implementation
Our FA algorithm is developed using the above flocking

rules and based on discrete time. Suppose all the terminal
nodes update their positions synchronously at every time
interval [s, s + 1] (e.g. every minute), and all the backbone
nodes move synchronously to update their positions and
velocities at every time step t until the movement of each
backbone node is smaller than a pre-defined resolution μ,
i.e. ||Bi(t) − Bi(t − 1)|| ≤ μ, or the maximum number of
iterations tmax is satisfied. Given a new input of coordinates
of all the terminal nodes {Tk(s)} (k = 1, 2, ..., M ), the
initial locations (i.e. the old locations at last time interval)
of the backbone nodes {Bi(0)} (i, j = 1, 2, ..., N ), we
first calculate the coverage topology hik(0) (i = 1, 2, ..., N ;

k = 1, 2, ..., M ) while satisfying physical constraints. In
the current implementation, the constraints with respect to
taboo areas only include mountains in a 3-D space with
full terrain information. A large number of mountains with
different heights are randomly generated. In the simulation
environment, we partition the x-y plane with a fixed grid
size, which is fine enough to produce satisfactory resolution,
corresponding to a terrain matrix Aterrain = [apq]m×m, where
each component represents the altitude of a point in the x-y
plane. Given a terminal node with location Tk = (xt

k, yt
k, zt

k)
and a backbone node located at Bi = (xb

i , y
b
i , z

b
i ), we have

developed an effective approximation algorithm to evaluate
if there is direct line of sight between the terminal node Tk

and the backbone node Bi bearing in mind the location of
mountains. In this research we only consider blockage between
terminal nodes and backbone nodes, as the backbone nodes
are usually located at fixed high altitudes. It is easy to extend
our approach to include blockage between backbone nodes in
military applications. The terrain checking algorithm is aided
by the interpolation function ’interp1’ from the MATLAB
toolbox (we used MATLAB as our simulation environment).
Forming the coverage topology, we first check the con-

straints from the terrain. The basic idea is that each terminal
node will first connect to its closest backbone node. If there
is no line of sight between them, we put the backbone node
into a taboo archive and connect to the second closest back-
bone node. The process stops when a connection is achieved
that satisfies the geographic constraints. If there is no line
of sight for all the backbone nodes, the terminal node is
considered isolated. We then consider the capacity constraint
Ri (i = (1, 2, ..., N)), i.e. the maximum number of terminals
that can be connected to each backbone node. In other words,
if the number of terminals ni connecting to backbone node i
exceeds the capacity Ri, we reconnect (ni −Ri) terminals to
other backbone nodes. The selection of terminal nodes that
need to be reconnected is based on the minimum-energy-
cost-first principle. The capacity checking process is similar
to the geography checking algorithm, but the reconnection to
other backbone nodes is required to first satisfy the geographic
algorithm, i.e. the geography checking algorithm is embedded
in this process. Finally, the overall implementation for the
flocking algorithm is summarized as follows

1) Given the initial positions of terminal nodes {Tk(0)},
the physical constraints Θ = {Cp, Cc, Cd, Ct}, set time
s = 0 for the dynamics of terminal nodes.

2) Given the initial positions of backbone nodes {Bi(0)},
set time t = 0 for the dynamics of backbone nodes.

3) Set time t ← t + 1, use the topology configuration
algorithm [9] to determine {bij}, then check the geo-
graphic constraints and the capacity constraints for all
the terminal nodes to determine the coverage topology
{hik}.

4) Calculate the force or velocity υi(t) for the backbone
node i according to Eq. (18).

5) Update the positions of backbone nodes {Bi(t)} ac-
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cording to Eq. (19).
6) Evaluate ||Bi(t)−Bi(t−1)|| for each backbone node, if

||Bi(t)−Bi(t−1)|| ≤ μ, then fix the current position of
backbone node i. If the maximum number of iterations
tmax is satisfied, go to Step 7); otherwise, go to step
3).

7) Set time s ← s + 1, terminal nodes move to new
positions {Tk(s)}, i.e. the new dynamics from terminal
nodes. Set Bi(0)← Bi(t) for each backbone node, and
go to step 2) until simulation is over.

Note that the FA can be executed in a distributed manner
because each backbone node only uses local information
from neighbor backbone nodes and the terminal nodes in
its coverage range. It is difficult to provide an explicit form
with respect to the computational time complexity of the
whole system due to the heterogeneous dynamics of the end
users. In each time step t, the computational time complexity
approximates to O(NM), where we do not take into account
the computation time required for the geography and capacity
checking algorithms. In practice, geographic information can
be directly obtained by the system almost in real time. The
computational time with respect to the capacity checking al-
gorithm is closely related to the dynamics of the end users and
backbone nodes. Thus, FA is able to maintain the distributed
nature and low time complexity of the entire system, while
significantly improving the system’s performance over existing
algorithms (as will be shown in the next section).

IV. EXPERIMENTS

A. Experimental Setup

In order to verify the performance of our proposed self-
organization and optimization algorithm for HHWNs, we
conducted experimental studies and present the corresponding
results for the dynamic scenario in which the HHWN includes
100 terminal nodes and 10 backbone nodes, i.e. M = 100,
N = 10. In all simulations, M terminal nodes are distributed
over a 50km × 50km plane and organized in clusters using
the Minimum Spanning Tree algorithm [10]. Nm mountains
are randomly generated in this plane with a maximum height
of 1.6km (we set Nm = 80 in this research). The altitudes
of terminal nodes are updated according to the terrain. The
backbone network in the upper layer is constructed using N
backbone nodes forming a ring topology. We use ring topolo-
gies for the backbone network to assure resilience through
bi-connectivity. Terminal nodes move according to the RPGM
model [11]. We place the backbone nodes at an altitude of 2
km, which indicates the backbone nodes move in 2D space
(i.e. x-y plane), and compare FA to the AFD model [4] and
the MFD model [1]. FA, AFD and MFD are used to make
backbone nodes adjust their locations until convergence to the
best possible backbone configuration.
In our experiments, FSO links with 2 mrad half beam

divergence are used for the backbone-to-backbone links and
RF links with π/4rad half beam divergence for the backbone-
to-terminal links. The minimum required received power used

TABLE I
COMPARATIVE RESULTS OF ENERGY COST

Time 0 1 2 3 4 5 6 7 8 9 10
FA Initial 3100.7 650.2 813.6 617.1 621.2 537.7 534.5 511.4 510.8 634.8 674.5

Optimized 654.5 798.5 565.6 564.3 511.8 507.1 466.2 442.5 555.3 598.4 631.2
MFD Initial 3100.7 1623.1 1061.8 767.8 700.1 633.7 568.5 585.3 641.8 757.5 936.0

Optimized 1749.6 1545.1 799.7 747.7 671.8 584.4 537.3 541.4 606.9 815.2 837.1
AFD Initial 3100.7 680.4 816.5 724.1 632.7 583.8 517.1 496.9 548.5 634.9 956.5

Optimized 663.3 815.7 692.2 644.3 573.7 501.2 458.7 492.6 560.5 916.6 727.5

TABLE II
NUMBER OF LOSS OF CONNECTIONS

Time 0 1 2 3 4 5 6 7 8 9 10
FA Initial 4 1 1 0 0 0 0 0 0 0 0

Optimized 1 1 1 0 0 0 0 0 0 0 0
MFD Initial 4 2 1 0 0 0 0 0 0 0 0

Optimized 3 1 1 0 0 0 0 0 0 0 0
AFD Initial 4 1 1 0 0 0 0 0 0 0 0

Optimized 1 1 1 0 0 0 0 0 0 0 0

was -45 dBm (31.6 nW) for all network nodes. The scattering
coefficient γ is set to zero. We set the power limitation for
both backbone nodes and terminal nodes at PTmax = 5W.
The configuration of parameter settings for FA is: the distance
threshold for the backbone-to-terminal links dBT

th,pul = 2km,
the distance threshold for the backbone-to-backbone links
dBB

th = 10km, the threshold to control the release force
dBT

th,lea = 10km, all the weighting parameters used in Eq.
(18) wp = 1, wl = 1 and wa = 1, the step size used in
Eq. (19) ρ = 0.01, the resolution μ = 0.1, capacity of each
backbone node Ri = 40, and maximum number of iterations
for FA tmax = 2000. The basic parameter settings for the AFD
model [4] and MFD model [1] follow the FA setting. All the
scenarios were run continuously for 10 minutes in simulated
clear atmosphere conditions.

B. Performance Metrics
We use three metrics, which are energy cost, loss of connec-

tions (LC), source-to-destination (SD) and standard deviation
of communication load in backbone nodes, to evaluate the
performance of the different algorithms including FA, AFD
[4] and MFD [1]. The metrics are specified as follows

• Energy cost U : the total communication energy stored
in the wireless links as defined in Eq. (1) (here, α = 1),
i.e.

U =
∑N

i=1

∑N
j=1 biju(Bi, Bj)

+
∑N

i=1

∑M
k=1 hiku(Bi, Tk)

. (20)

• Loss of connections ULOS : the number of isolated end
users (terminal nodes) that are not able to connect to any
backbone node due to physical constraints. Its definition
is described as

ULOS = (M −
∑N

i=1

∑M

k=1
hik). (21)

• Source-to-destination USD: note that wireless links will
not always be available with respect to power constraints.
Exceeding link distances and atmospheric obscuration
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TABLE III
PERFORMANCE OF AVERAGE ENERGY COST

Algorithm Initial Optimized Energy Save
FA 836.95 572.31 31.62%
MFD 1034.20 857.84 17.05%
AFD 881.10 640.57 27.30%

TABLE IV
COMPARATIVE RESULTS OF SOURCE-TO-DESTINATION

Time 0 1 2 3 4 5 6 7 8 9 10
FA Initial 1122 3080 2352 3306 3422 4556 4032 4290 4032 3906 3782

Optimized 3442 3660 4160 4160 4556 4422 4556 5122 4692 4422 4556
MFD Initial 1122 1560 3660 4160 4160 4830 5112 5852 5550 4556 4970

Optimized 2652 4032 4160 4422 4692 5256 5402 5550 5256 4970 5112
AFD Initial 1122 3422 3422 3422 3306 3782 3906 4290 4160 3906 3906

Optimized 3660 3660 3540 3540 4160 4556 4692 4970 4422 4290 3906

will cause link breaks that will terminate SD connections
in the network [1]. Here, SD refers to the number of
SD pairs for which a path exists between them, which is
defined as

USD =
∑Ns

i=1
nsi(nsi − 1), (22)

where Ns represents the number of clusters or connected
components at the backbone network and nsi

represents
the number of terminal nodes connected to a backbone
node in cluster si.

C. Results and comparison

In this section, we compare the performance of our proposed
algorithm, i.e. FA, to AFD [4] and MFD [1] based on the above
defined metrics. Table I lists the energy costs of the system at
the starting point and at the end of each time interval during
10 minutes. For each interval, we list the results based on
the initial configuration of the HHWN and the results after
the optimization by the algorithms. On the other hand, we
summarize the results associated with LC in Table II. We
clarify that a large value of LC brings low the energy cost, but
results in bad quality of service. Based on the similar results
for LC, it is observed that FA delivers better results compared
to AFD and MFD in overall simulation time. Table III shows
the average energy cost for the different algorithms according
to Table I. FA saves 31.62% energy, which significantly
outperforms AFD and MFD. Another observation is that the
value of the energy cost produced by FA during minutes 4, 7, 9
and 10 oscillates, which is caused by the pre-defined resolution
μ. In terms of the SD metric, we compare the results in Table
IV for every time interval and also summarize the average
SD in Table V. From minute 3 to minute 7, MFD produces
a larger number of SD connections than FA and AFD, but
FA delivers a more significant improvement based on average
SD connections as shown in Table V. It is noted that although
MFD achieves a large number of average SD connections, the
improvement it delivers is relatively small due to the large
initial number of SD connections.

TABLE V
PERFORMANCE OF AVERAGE SOURCE-TO-DESTINATION

Algorithm Initial Optimized Energy Save
FA 3443.6 4340.7 26.05%
MFD 4139.3 4682.2 13.12%
AFD 3513.1 4126.9 17.47%

V. CONCLUSIONS AND FUTURE WORK

This paper presents a new framework to model and optimize
HHWNs under real world physical constraints. First, we pro-
pose a mathematical modeling method for the self-organization
and optimization of HHWNs by taking into account phys-
ical constraints. Second, using only local information, we
develop new flocking rules and a corresponding algorithm
to autonomously assure and optimize network performance
in a practical way. Experimental results confirm that FA
outperforms current algorithms. FA is capable of maintaining
the distributed nature and low complexity of the system
while achieving improved performance associated with the
dynamic configuration of an HHWN under real world physical
constraints. Furthermore, with the use of FA, the backbone
nodes can move flexibly in 3D space by taking into account
the repulsion force from physical constraints (e.g. mountains).
In future work, we plan to investigate our algorithms in more
complex dynamic environments. We also note that the stability
analysis of dynamic HHWNs is still an open problem. We plan
to conduct a theoretical analysis of the stability of an HHWN
in the context of self-organization and control.
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